
自然語言處理中的貝葉斯分析, 2/e (Bayesian Analysis in Natural Language Processing, 2/e)
內容描述
本書涵蓋了流利閱讀NLP中貝葉斯學習方向的論文以及從事該領域的研究所需的方法和算法。
這些方法和算法部分來自於機器學習和統計學,部分是針對NLP開發的。
我們涵蓋推理技術,如馬爾科夫鏈、蒙特卡羅抽樣和變分推理、貝葉斯估計和非參數建模。
為了應對該領域的快速變化,本書新版增加了一個新的章節,關於貝葉斯背景下的表現學習和神經網絡。
我們還將介紹貝葉斯統計的基本概念,如先驗分佈、共軛性和生成式建模。
後,我們回顧了一些基本的NLP建模技術,如語法建模、神經網絡和表示學習,以及它們在貝葉斯分析中的應用。