
Pytorch Pocket Reference: Building and Deploying Deep Learning Models
內容描述
This concise, easy-to-use reference puts one of the most popular frameworks for deep learning research and development at your fingertips. Author Joe Papa provides instant access to syntax, design patterns, and code examples to accelerate your development and reduce the time you spend searching for answers.Research scientists, machine learning engineers, and software developers will find clear, structured PyTorch code that covers every step of neural network development--from loading data to customizing training loops to model optimization and GPU/TPU acceleration. Quickly learn how to deploy your code to production using AWS, Google Cloud, or Azure and deploy your ML models to mobile and edge devices.Learn basic PyTorch syntax and design patternsCreate custom models and data transformsTrain and deploy models using a GPU and TPUTrain and test a deep learning classifierAccelerate training using optimization and distributed trainingAccess useful PyTorch libraries and the PyTorch ecosystem
作者介紹
Joe Papa has over 25 years experience in research & development and is the founder of INSPIRD.ai. He holds an MSEE and has led AI Research teams with PyTorch at Booz Allen and Perspecta Labs. Joe has mentored hundreds of Data Scientists and has taught 6,000+ students across the world on Udemy.