Algorithms for Reinforcement Learning (Paperback)

Algorithms for Reinforcement Learning (Paperback)

作者: Csaba Szepesvari
出版社: Morgan & Claypool
出版在: 2010-06-25
ISBN-13: 9781608454921
ISBN-10: 1608454924
裝訂格式: Paperback
總頁數: 104 頁





內容描述


Reinforcement learning is a learning paradigm concerned with learning to control a system so as to maximize a numerical performance measure that expresses a long-term objective.What distinguishes reinforcement learning from supervised learning is that only partial feedback is given to the learner about the learner's predictions. Further, the predictions may have long term effects through influencing the future state of the controlled system. Thus, time plays a special role. The goal in reinforcement learning is to develop efficient learning algorithms, as well as to understand the algorithms' merits and limitations. Reinforcement learning is of great interest because of the large number of practical applications that it can be used to address, ranging from problems in artificial intelligence to operations research or control engineering. In this book, we focus on those algorithms of reinforcement learning that build on the powerful theory of dynamic programming.We give a fairly comprehensive catalog of learning problems, describe the core ideas, note a large number of state of the art algorithms, followed by the discussion of their theoretical properties and limitations.




相關書籍

MySQL Connector/Python Revealed: SQL and NoSQL Data Storage Using MySQL for Python Programmers

作者 Jesper Wisborg Krogh

2010-06-25

MATLAB 小波分析超級學習手冊

作者 孔玲軍

2010-06-25

How Smart Machines Think (The MIT Press)

作者 Sean Gerrish

2010-06-25