Practical Natural Language Processing: A Comprehensive Guide to Building Real-World Nlp Systems
內容描述
If you want to build, iterate and scale NLP systems in a business setting and to tailor them for various industry verticals, this is your guide.
Consider the task of building a chatbot or text classification system at your organization. In the beginning, there may be little or no data to work with. At this point, a basic solution that uses rule based systems or traditional machine learning will be apt. As you accumulate more data, more sophisticated--and often data intensive--ML techniques can be used including deep learning. At each step of this journey, there are dozens of alternative approaches you can take. This book helps you navigate this maze of options.
作者介紹
Sowmya Vajjala has a PhD in Computational Linguistics from University of Tubingen, Germany. She currently works as a research officer at National Research Council, Canada's largest federal research and development organization. Her past work experience spans both academia as a faculty at Iowa State University, USA as well as industry at Microsoft Research and The Globe and Mail.
Bodhisattwa Majumder is a doctoral candidate in NLP and ML at UC San Diego. Earlier he studied at IIT Kharagpur where he graduated summa cum laude. Previously, he built large-scale NLP systems at Google AI Research and Microsoft Research, which went into products serving millions of users. Currently, he is also leading his university team in the Amazon Alexa Prize for 2019-2020.
Anuj Gupta has built NLP and ML systems at Fortune 100 companies as well as startups as a senior leader. He has incubated and led multiple ML teams in his career. He studied computer science at IIT Delhi and IIIT Hyderabad. He is currently Head of Machine Learning and Data Science at Vahan Inc. Above all, he is a father and husband.
Harshit Surana is founder at DeepFlux Inc. He has built and scaled ML systems at several Silicon Valley startups as a founder and an advisor. He studied computer science at Carnegie Mellon University where he worked with the MIT Media Lab on common sense AI. His research in NLP has received over 200 citations.