Statistical Data Mining Using SAS Applications, 2/e (Hardcover)

Statistical Data Mining Using SAS Applications, 2/e (Hardcover)

作者: George Fernandez
出版社: CRC
出版在: 2010-06-18
ISBN-13: 9781439810750
ISBN-10: 1439810753
裝訂格式: Hardcover
總頁數: 477 頁





內容描述


Statistical Data Mining Using SAS Applications, Second Edition describes statistical data mining concepts and demonstrates the features of user-friendly data mining SAS tools. Integrating the statistical and graphical analysis tools available in SAS systems, the book provides complete statistical data mining solutions without writing SAS program codes or using the point-and-click approach. Each chapter emphasizes step-by-step instructions for using SAS macros and interpreting the results. Compiled data mining SAS macro files are available for download on the author’s website. By following the step-by-step instructions and downloading the SAS macros, analysts can perform complete data mining analysis fast and effectively. New to the Second Edition—General Features Access to SAS macros directly from desktop Compatible with SAS version 9, SAS Enterprise Guide, and SAS Learning Edition Reorganization of all help files to an appendix Ability to create publication quality graphics Macro-call error check New Features in These SAS-Specific Macro Applications Converting PC data files to SAS data (EXLSAS2 macro) Randomly splitting data (RANSPLIT2) Frequency analysis (FREQ2) Univariate analysis (UNIVAR2) PCA and factor analysis (FACTOR2) Multiple linear regressions (REGDIAG2) Logistic regression (LOGIST2) CHAID analysis (CHAID2) Requiring no experience with SAS programming, this resource supplies instructions and tools for quickly performing exploratory statistical methods, regression analysis, logistic regression multivariate methods, and classification analysis. It presents an accessible, SAS macro-oriented approach while offering comprehensive data mining solutions.




相關書籍

Artificial Intelligence and Games

作者 Georgios N. Yannakakis Julian Togelius

2010-06-18

銷售 AI 化!看資料科學家如何思考, 用 Python 打造能賺錢的機器學習模型

作者 世界 500 大 Accenture 公司 AI 集團總監 Masanori Akaishi 王心薇 譯;施威銘研究室 監修

2010-06-18

R語言機器學習

作者 卡西克·拉瑪蘇布蘭馬尼安

2010-06-18