Understanding Machine Learning: From Theory to Algorithms (Hardcover)

Understanding Machine Learning: From Theory to Algorithms (Hardcover)

作者: Shai Shalev-Shwartz Shai Ben-David
出版社: Cambridge
出版在: 2014-05-19
ISBN-13: 9781107057135
ISBN-10: 1107057132
裝訂格式: Hardcover
總頁數: 410 頁




內容描述


Machine learning is one of the fastest growing areas of computer science, with far-reaching applications. The aim of this textbook is to introduce machine learning, and the algorithmic paradigms it offers, in a principled way. The book provides an extensive theoretical account of the fundamental ideas underlying machine learning and the mathematical derivations that transform these principles into practical algorithms. Following a presentation of the basics of the field, the book covers a wide array of central topics that have not been addressed by previous textbooks. These include a discussion of the computational complexity of learning and the concepts of convexity and stability; important algorithmic paradigms including stochastic gradient descent, neural networks, and structured output learning; and emerging theoretical concepts such as the PAC-Bayes approach and compression-based bounds. Designed for an advanced undergraduate or beginning graduate course, the text makes the fundamentals and algorithms of machine learning accessible to students and non-expert readers in statistics, computer science, mathematics, and engineering.




相關書籍

Feature Engineering and Selection: A Practical Approach for Predictive Models

作者 Kuhn Max Johnson Kjell

2014-05-19

Artificial Intelligence for Robotics: Build intelligent robots that perform human tasks using AI techniques

作者 Francis X. Govers

2014-05-19

Big Data Analytics: From Strategic Planning to Enterprise Integration with Tools, Techniques, NoSQL, and Graph (Paperback)

作者 David Loshin

2014-05-19







2
2
2