Understanding Machine Learning: From Theory to Algorithms (Hardcover)

Understanding Machine Learning: From Theory to Algorithms (Hardcover)

作者: Shai Shalev-Shwartz Shai Ben-David
出版社: Cambridge
出版在: 2014-05-19
ISBN-13: 9781107057135
ISBN-10: 1107057132
裝訂格式: Hardcover
總頁數: 410 頁




內容描述


Machine learning is one of the fastest growing areas of computer science, with far-reaching applications. The aim of this textbook is to introduce machine learning, and the algorithmic paradigms it offers, in a principled way. The book provides an extensive theoretical account of the fundamental ideas underlying machine learning and the mathematical derivations that transform these principles into practical algorithms. Following a presentation of the basics of the field, the book covers a wide array of central topics that have not been addressed by previous textbooks. These include a discussion of the computational complexity of learning and the concepts of convexity and stability; important algorithmic paradigms including stochastic gradient descent, neural networks, and structured output learning; and emerging theoretical concepts such as the PAC-Bayes approach and compression-based bounds. Designed for an advanced undergraduate or beginning graduate course, the text makes the fundamentals and algorithms of machine learning accessible to students and non-expert readers in statistics, computer science, mathematics, and engineering.




相關書籍

Python 數據分析師修煉之道 (Become a Python Data Analyst: Perform exploratory data analysis and gain insight into scientific computing using Python)

作者 [美] 阿爾瓦羅?富恩特斯 劉璋 譯

2014-05-19

SPSS 基礎統計分析

作者 袁正綱

2014-05-19

Python for Finance Cookbook

作者 Eryk Lewinson

2014-05-19