深度學習:R語言實踐指南 (Introduction to Deep Learning Using R: A Step-by-Step Guide to Learning and Implementing Deep Learning Models Using R)

深度學習:R語言實踐指南 (Introduction to Deep Learning Using R: A Step-by-Step Guide to Learning and Implementing Deep Learning Models Using R)

作者: [美]托威赫·貝索洛(Taweh Beysolow II)
出版社: 機械工業
出版在: 2018-07-27
ISBN-13: 9787111604372
ISBN-10: 7111604377
裝訂格式: 平裝
總頁數: 224 頁





內容描述


本書內容主要涉及:深度學習的數學理論基礎,包括重要的統計學和線性代數的相關基本概念和知識;深度學習的各種典型模型,例如傳統的單層感知器模型、多層感知器模型,以及捲積神經網絡、循環神經網絡、受限玻耳茲曼機、深度信念網絡等一些更為複雜的模型;構建深度學習模型的實驗設計方法以及實驗過程中的特徵選擇方法;應用R語言進行機器學習和深度學習實踐的案例。


目錄大綱


譯者序
關於作者
關於技術審稿人
前言
第1章深度學習簡介
11深度學習模型
111單層感知器模型
112多層感知器模型
113卷積神經網絡
114循環神經網絡
115受限玻耳茲曼機
116深度信念網絡
12其他
121實驗設計
122特徵選擇
123機器學習及深度學習應用
124深度學習的歷史
13小結
第2章數學知識回顧
21統計學基本概念
211概率
212交與並
213貝葉斯定理
214隨機變量
215方差
216標準差
217可決係數
218均方誤差
22線性代數
221標量和向量
222向量的特性
223公理
224子空間
225矩陣
23小結
第3章優化及機器學習回顧
31無約束優化
311局部極小值
312全局極小值
313局部極小值的條件
32近鄰算法
33機器學習方法:有監督學習
331機器學習的歷史
332什麼是算法
34回歸模型
35選擇合適的學習速率
351牛頓法
352LevenbergMarquardt啟發式方法
36多重共線性
37評價回歸模型
38分類
381邏輯回歸
382受試者工作特徵曲線
383混淆矩陣
384邏輯回歸的局限性
3 85支持向量機
39機器學習方法:無監督學習
391K均值聚類
392K均值聚類的局限性
310最大期望算法
311決策樹學習
3 12集成方法以及其他啟發式算法
313貝葉斯學習
314強化學習
315小結
第4章單層及多層感知器模型
41單層感知器模型
411訓練感知器模型
412WH算法
413單層感知器模型的局限性
414匯總統計結果
42多層感知器模型
421收斂得到全局最優解
422MLP模型中的反向傳播算法
423MLP模型的局限性和討論
424應該使用幾層隱含層,又應該有多少個神經元
43小結
第5章卷積神經網絡
51CNN的結構和特點
52CNN的組成
521卷積層
522池化層
523修正線性單元層
524全連接層
525損失層
53參數調整
54經典的CNN架構
55正則化
56小結
第6章循環神經網絡
61完全循環網絡
62使用時間反向傳播訓練RNN 
63Elman神經網絡
64神經歷史壓縮器
65長短期記憶網絡
66RNN裡的結構化抑制
67參數調優更新算法
68RNN的實際案例:模式檢測
69小結
第7章自編碼器、受限玻耳茲曼機及深度信念網絡
71自編碼器
7 2受限玻耳茲曼機
73深度信念網絡
74快速學習算法
75小結
第8章實驗設計與啟發
81方差分析
82F統計和F分佈
83PlackettBurman設計
84空間填充
85全因子
86Halton、Faure和Sobol序列
87A /B測試
871簡單雙樣本A/B測試
872A/B測試中的β二項層次模型
88特徵、變量選擇技術
881後向與前向選擇
8 82主成分分析
883因子分析
89處理分類數據
891因子水平編碼
892分類標籤問題:太多水平值
893典型相關分析
8 10包裹式、過濾式及嵌入式算法
811其他局部搜索算法
8111登山算法
8112遺傳算法
8113模擬退火
8114蟻群優化算法
8 115變鄰域搜索算法
812反應式搜索優化
8121反應式禁忌
8122固定禁忌搜索
8123反應式禁忌搜索
8124WalkSAT算法
812 5K近鄰
813小結
第9章軟硬件建議
91使用標準硬件處理數據
92固態硬盤和硬盤驅動器
93圖形處理單元
94中央處理器
95隨機存取存儲器
96主板
97供電設備
98機器學習軟件的優化
99小結
第10章機器學習實例
101問題1:資產價格預測
1011問題類型:有監督學習——回歸
1012實驗說明
10 13特徵選擇
1014模型評價
102問題2:速配
1021問題類型:分類
1022數據預處理:數據清洗和填充
1023特徵選擇
10 24模型訓練和評價
103小結
第11章深度學習及其他實例
111自編碼器
112卷積神經網絡
1121預處理
1122模型構建和訓練
11 3協同過濾
114小結
結束語


作者介紹


關於作者
Taweh Beysolow Ⅱ機器學習科學家,現居美國,熱衷於研究及應用機器學習方法解決實際問題。他本科畢業於聖約翰大學,獲得經濟學學士學位,後獲得福特漢姆大學應用統計學碩士學位。他對一切與機器學習、數據科學、計量金融及經濟學相關的內容都有著巨大的熱情。




相關書籍

Python基礎與數據分析

作者 孫炯寧;游學軍

2018-07-27

Python 網絡爬蟲與數據可視化應用實戰

作者 陳允傑

2018-07-27

高級R語言編程指南(原書第2版)

作者 Hadley Wickham

2018-07-27