人工智能開發叢書--數據挖掘與機器學習:PMML建模(下)

人工智能開發叢書--數據挖掘與機器學習:PMML建模(下)

作者: 潘風文 黃春芳
出版社: 化學工業
出版在: 2020-09-01
ISBN-13: 9787122369871
ISBN-10: 7122369870
裝訂格式: 平裝
總頁數: 228 頁





內容描述


本書詳細描述了PMML規範(Ver4.3)所支持的8種模型:神經網絡模型、
決策樹模型、規則集模型、序列模型、評分卡模型、支持向量機模型、時間序列模型和聚合模型。
全書不是簡單地介紹PMML語法,而是融合各種挖掘模型基礎知識和算法知識,
告訴開發者如何融會貫通地掌握、使用PMML語言,不僅能夠學習到標準的PMML模型表達方式,
而且能學習機器學習模型的豐富知識,從而熟練地把PMML語言應用到自己的項目實踐中。
本書可供從事數據挖掘(機器學習)、人工智能係統開發的軟件開發者和愛好者學習使用,
也可以作為高等院校大數據和人工智能等相關專業的教材。


目錄大綱


目錄
1神經網絡模型(NeuralNetwork)
1.1神經網絡模型基礎知識
1.2神經網絡模型算法簡介
1.3神經網絡模型元素
1.3.1模型屬性
1.3.2模型子元素
1.3.3評分應用過程
2決策樹模型(TreeModel)
2.1決策樹模型基礎知識
2.1.1決策樹模型簡介
2.1.2邏輯謂詞表達式
2.2決策樹模型算法簡介
2.2.1卡方自動交互檢驗算法(CHAID)
2.2.2迭代二叉樹ID3
2.2.3分類器C4.5和C5.0
2.2.4分類與回歸樹算法CART
2.3決策樹模型元素
2.3.1模型屬性
2.3.2模型子元素
2.3.3評分應用過程
3規則集模型(RuleSetModel)
3.1規則集模型基礎知識
3.2規則集模型元素
3.2.1模型屬性
3.2.2模型子元素
3.2.3評分應用過程
4序列模型(SequenceModel)
4.1序列模型基礎知識
4.2序列模型算法簡介
4.2.1 GSP算法
4.2.2 SPADE算法
4.2.3 PrefixSpan算法
4.3序列模型元素
4.3.1模型屬性
4.3.2模型子元素
4.3.3評分應用過程
5評分卡模型(Scorecard)
5.1評分卡模型基礎知識
5.2評分卡模型算法簡介
5.3評分卡模型元素
5.3.1模型屬性
5.3.2模型子元素
5.3.3評分應用過程
6支持向量機模型(SupportVectorMachineModel)
6.1支持向量機模型基礎知識
6.2支持向量機模型算法簡介
6.3支持向量機模型元素
6.3.1模型屬性
6.3.2模型子元素
6.3.3評分應用過程
7時間序列模型(TimeSeriesModel )
7.1時間序列模型基礎知識
7.2時間序列模型算法簡介
7.2.1算法概述
7.2.2指數平滑算法
7.3時間序列模型元素
7.3.1模型屬性
7.3.2模型子元素
7.3.3評分應用過程
8聚合模型(MiningModel )
8.1模型聚合基礎知識
8.2挖掘模型MiningModel
附錄
後記




相關書籍

Advanced Python Development: Using Powerful Language Features in Real-World Applications

作者 Wilkes Matthew

2020-09-01

Essential PySpark for Scalable Data Analytics: A beginner's guide to harnessing the power and ease of PySpark 3

作者 Nudurupati Sreeram

2020-09-01

深度學習——基於Python語言和TensorFlow平臺(視頻講解版)

作者 謝瓊

2020-09-01