Hands-On Neural Networks with Keras

Hands-On Neural Networks with Keras

作者: Niloy Purkait
出版社: Packt Publishing
出版在: 2019-03-30
ISBN-13: 9781789536089
ISBN-10: 1789536081
裝訂格式: Paperback
總頁數: 462 頁





內容描述


Key Features

Design and create neural network architectures on different domains using Keras
Integrate neural network models in your applications using this highly practical guide
Get ready for the future of neural networks through transfer learning and predicting multi network models

Book Description
Neural networks are used to solve a wide range of problems in different areas of AI and deep learning.
Hands-On Neural Networks with Keras will start with teaching you about the core concepts of neural networks. You will delve into combining different neural network models and work with real-world use cases, including computer vision, natural language understanding, synthetic data generation, and many more. Moving on, you will become well versed with convolutional neural networks (CNNs), recurrent neural networks (RNNs), long short-term memory (LSTM) networks, autoencoders, and generative adversarial networks (GANs) using real-world training datasets. We will examine how to use CNNs for image recognition, how to use reinforcement learning agents, and many more. We will dive into the specific architectures of various networks and then implement each of them in a hands-on manner using industry-grade frameworks.
By the end of this book, you will be highly familiar with all prominent deep learning models and frameworks, and the options you have when applying deep learning to real-world scenarios and embedding artificial intelligence as the core fabric of your organization.
What you will learn

Understand the fundamental nature and workflow of predictive data modeling
Explore how different types of visual and linguistic signals are processed by neural networks
Dive into the mathematical and statistical ideas behind how networks learn from data
Design and implement various neural networks such as CNNs, LSTMs, and GANs
Use different architectures to tackle cognitive tasks and embed intelligence in systems
Learn how to generate synthetic data and use augmentation strategies to improve your models
Stay on top of the latest academic and commercial developments in the field of AI

Who this book is for
This book is for machine learning practitioners, deep learning researchers and AI enthusiasts who are looking to get well versed with different neural network architecture using Keras. Working knowledge of Python programming language is mandatory.


目錄大綱


Overview of Neural Networks
A Deeper Dive into Neural Networks
Signal Processing - Data Analysis with Neural Networks
Convolutional Neural Networks
Recurrent Neural Networks
Long Short-Term Memory Networks
Reinforcement Learning with Deep Q-Networks
Autoencoders
Generative Networks
Contemplating Present and Future Developments




相關書籍

Process Mining: Data Science in Action

作者 Wil M. P. van der Aalst

2019-03-30

Python Algorithmic Trading Cookbook: All the recipes you need to implement your own algorithmic trading strategies in Python

作者 Dagade Pushpak

2019-03-30

機器學習數學基礎 (Python 語言實現)

作者 周洋 張小霞

2019-03-30