Natural Language Annotation for Machine Learning (Paperback)

Natural Language Annotation for Machine Learning (Paperback)

作者: James Pustejovsky Amber Stubbs
出版社: O'Reilly
出版在: 2012-11-20
ISBN-13: 9781449306663
ISBN-10: 1449306667
裝訂格式: Paperback
總頁數: 342 頁





內容描述


Create your own natural language training corpus for machine learning. Whether you’re working with English, Chinese, or any other natural language, this hands-on book guides you through a proven annotation development cycle—the process of adding metadata to your training corpus to help ML algorithms work more efficiently. You don’t need any programming or linguistics experience to get started.Using detailed examples at every step, you’ll learn how the MATTER Annotation Development Process helps you Model, Annotate, Train, Test, Evaluate, and Revise your training corpus. You also get a complete walkthrough of a real-world annotation project.Define a clear annotation goal before collecting your dataset (corpus) Learn tools for analyzing the linguistic content of your corpus Build a model and specification for your annotation project Examine the different annotation formats, from basic XML to the Linguistic Annotation Framework Create a gold standard corpus that can be used to train and test ML algorithms Select the ML algorithms that will process your annotated data Evaluate the test results and revise your annotation task Learn how to use lightweight software for annotating texts and adjudicating the annotations This book is a perfect companion to O’Reilly’s Natural Language Processing with Python.




相關書籍

R語言市場研究分析

作者 克裡斯托弗 N.查普曼 (Christopher N. Chapman) 埃里亞·麥克唐奈·費特 (Elea McDonnel)

2012-11-20

谷歌JAX深度學習從零開始學

作者 王曉華

2012-11-20

數字調制解調技術的 MATLAB 與 FPGA 實現 — Altera/Verilog 版, 2/e

作者 杜勇

2012-11-20