Data Mining: Theories, Algorithms, and Examples (Hardcover)

Data Mining: Theories, Algorithms, and Examples (Hardcover)

作者: Nong Ye
出版社: CRC
出版在: 2013-07-26
ISBN-13: 9781439808382
ISBN-10: 1439808384
裝訂格式: Hardcover
總頁數: 349 頁





內容描述


New technologies have enabled us to collect massive amounts of data in many fields. However, our pace of discovering useful information and knowledge from these data falls far behind our pace of collecting the data. Data Mining: Theories, Algorithms, and Examples introduces and explains a comprehensive set of data mining algorithms from various data mining fields. The book reviews theoretical rationales and procedural details of data mining algorithms, including those commonly found in the literature and those presenting considerable difficulty, using small data examples to explain and walk through the algorithms. The book covers a wide range of data mining algorithms, including those commonly found in data mining literature and those not fully covered in most of existing literature due to their considerable difficulty. The book presents a list of software packages that support the data mining algorithms, applications of the data mining algorithms with references, and exercises, along with the solutions manual and PowerPoint slides of lectures. The author takes a practical approach to data mining algorithms so that the data patterns produced can be fully interpreted. This approach enables students to understand theoretical and operational aspects of data mining algorithms and to manually execute the algorithms for a thorough understanding of the data patterns produced by them.




相關書籍

Essential PySpark for Scalable Data Analytics: A beginner's guide to harnessing the power and ease of PySpark 3

作者 Nudurupati Sreeram

2013-07-26

Big Data Analytics Using Splunk: Deriving Operational Intelligence from Social Media, Machine Data, Existing Data Warehouses, and Other Real-Time Streaming Sources

作者 Peter Zadrozny

2013-07-26

Computer Vision: Algorithms and Applications (Hardcover)

作者 Richard Szeliski

2013-07-26