線性代數, 2/e

線性代數, 2/e

作者: 容志輝
出版社: 五南
出版在: 2012-10-17
ISBN-13: 9789571167770
ISBN-10: 9571167770
總頁數: 352 頁





內容描述


<內容簡介>
線性代數經常與微積分並列為學習數學最基礎的兩門入門課,並被各大學理工科系列為必修課程。此書適合大專院校理工科系三或六學分教科書或參考自修研習。內容取材廣泛豐富,由淺入深,包括最基礎的矩陣理論、行列式、高斯消去法、解聯立方程組等相關預備知識,再介紹向量空間及其間之線性映射,利用同構映射分類有限維度向量空間,並對應到同維度之矩陣空間。  書中詳細探討對角化問題,捨棄一般教科書純代數觀點,改以商空間幾何觀點證明Jordan定理,乃本書最大特色之一。最後介紹內積空間,並討論投影映射與正規算子等較深入課題,可作為進階學習,如泛函分析等課程之基礎。全書之編寫採取嚴謹詮證手法,對訓練學生數理邏輯思考有很大助益。  書中並有大量習題,依難易程度做上標記,有些是基本演算題,有些則是定理證明或是更進一步應用證明。透過這些證明的數學思考及反覆推理,可讓讀者真正體會線性代數之奧妙,並達事半功倍之學習效果。

<章節目錄>
1 預備知識  1.1 前言  1.2 矩陣  1.3 基本列與行運算  1.4 聯立方程組與高斯消去法  1.5 LU及LDU分解  1.6 分割  1.7 行列式  1.8 伴隨矩陣  1.9 Crame定理  1.10 習題2 向量空間  2.1 前言  2.2 體  2.3 向量空間公設  2.4 子空間  2.5 線性組合  2.6 線性相依與線性獨立  2.7 基底及維度  2.8 直和與向量空間的分解  2.9 商集與商空間  2.10 習題3 線性映射  3.1 前言  3.2 集合間的映射  3.3 線性映射  3.4 核空間與像空間  3.5 有限維度向量空間的分類  3.6 代表矩陣  3.7 線性映射與基底變換  3.8 對偶空間  3.9 再論商空間的維度  3.10 商空間的結構與同構定理  3.11 習題4 對角化問題  4.1 前言  4.2 兩等效問題  4.3 特徵值與特徵向量  4.4 可對角化的條件  4.5 簡單應用  4.6 習題5 Jordan標準式  5.1 前言  5.2 不變子空間  5.3 Cayley-Hamilton定理  5.4 冪零算子與冪零矩陣  5.5 Jordan定理  5.6 最小多項式  5.7 習題6 內積空間  6.1 前言  6.2 內積空間的定義與基本性質  6.3 正交基底與正交投影  6.4 正交補集  6.5 Riesz表現定理  6.6 Hilbert伴隨映射  6.7 正規算子與結構定理  6.8 正交投影算子與正規算子的譜定理  6.9 正算子與奇異值分解  6.10 習題




相關書籍

研究所 2023 試題大補帖【離散數學】(109~111年試題)[適用台大、政大、陽明交通、台聯大系統、成大、中央、中正、中山、臺師大、北大、台科大、清大、中興、暨南、雄大研究所考試]

作者 林緯

2012-10-17

統計信號處理基礎——估計與檢測理論(卷I、卷II合集)

作者 (美)凱

2012-10-17

研究所講重點【離散數學(上)(含歷屆經典試題解析)】[適用研究所理工/資訊所、電機所考試](二版)

作者 林緯

2012-10-17