High-Dimensional Probability: An Introduction with Applications in Data Science (Hardcover)

High-Dimensional Probability: An Introduction with Applications in Data Science (Hardcover)

作者: Roman Vershynin
出版社: Cambridge
出版在: 2018-11-22
ISBN-13: 9781108415194
ISBN-10: 1108415199
裝訂格式: Hardcover
總頁數: 296 頁





內容描述


High-dimensional probability offers insight into the behavior of random vectors, random matrices, random subspaces, and objects used to quantify uncertainty in high dimensions. Drawing on ideas from probability, analysis, and geometry, it lends itself to applications in mathematics, statistics, theoretical computer science, signal processing, optimization, and more. It is the first to integrate theory, key tools, and modern applications of high-dimensional probability. Concentration inequalities form the core, and it covers both classical results such as Hoeffding's and Chernoff's inequalities and modern developments such as the matrix Bernstein's inequality. It then introduces the powerful methods based on stochastic processes, including such tools as Slepian's, Sudakov's, and Dudley's inequalities, as well as generic chaining and bounds based on VC dimension. A broad range of illustrations is embedded throughout, including classical and modern results for covariance estimation, clustering, networks, semidefinite programming, coding, dimension reduction, matrix completion, machine learning, compressed sensing, and sparse regression.




相關書籍

Python數據分析與數據化運營

作者 宋天龍

2018-11-22

對比 Excel,輕鬆學習 Python 數據分析

作者 張俊紅

2018-11-22

輕鬆學習人工智慧應用 - 使用 Python 和 iPOE A6 AI 影像無人車

作者 連宏城 陳秋燕 高湋宸 連紹傑

2018-11-22