High-Dimensional Probability: An Introduction with Applications in Data Science (Hardcover)

High-Dimensional Probability: An Introduction with Applications in Data Science (Hardcover)

作者: Roman Vershynin
出版社: Cambridge
出版在: 2018-11-22
ISBN-13: 9781108415194
ISBN-10: 1108415199
裝訂格式: Hardcover
總頁數: 296 頁





內容描述


High-dimensional probability offers insight into the behavior of random vectors, random matrices, random subspaces, and objects used to quantify uncertainty in high dimensions. Drawing on ideas from probability, analysis, and geometry, it lends itself to applications in mathematics, statistics, theoretical computer science, signal processing, optimization, and more. It is the first to integrate theory, key tools, and modern applications of high-dimensional probability. Concentration inequalities form the core, and it covers both classical results such as Hoeffding's and Chernoff's inequalities and modern developments such as the matrix Bernstein's inequality. It then introduces the powerful methods based on stochastic processes, including such tools as Slepian's, Sudakov's, and Dudley's inequalities, as well as generic chaining and bounds based on VC dimension. A broad range of illustrations is embedded throughout, including classical and modern results for covariance estimation, clustering, networks, semidefinite programming, coding, dimension reduction, matrix completion, machine learning, compressed sensing, and sparse regression.




相關書籍

Python 語言程序設計 (Introduction to Programming Using Python)

作者 梁勇 (Y.Daniel Liang)

2018-11-22

Build Chatbot Interactions: Responsive, Intuitive Interfaces with Ruby

作者 Pritchett Daniel

2018-11-22

人工智慧 mBot 機器人互動程式設計:AI人工智慧、IoT物聯網、大數據與ML機器深度學習

作者 王麗君

2018-11-22