Python Feature Engineering Cookbook

Python Feature Engineering Cookbook

作者: Soledad Galli
出版社: Packt Publishing
出版在: 2020-01-22
ISBN-13: 9781789806311
ISBN-10: 1789806313
裝訂格式: Quality Paper - also called trade paper
總頁數: 372 頁





內容描述


Key Features

Discover solutions for feature generation, feature extraction, and feature selection
Uncover the end-to-end feature engineering process across continuous, discrete, and unstructured datasets
Implement modern feature extraction techniques using Python's pandas, scikit-learn, SciPy and NumPy libraries

Book Description
Feature engineering is invaluable for developing and enriching your machine learning models. In this cookbook, you will work with the best tools to streamline your feature engineering pipelines and techniques and simplify and improve the quality of your code.
Using Python libraries such as pandas, scikit-learn, Featuretools, and Feature-engine, you'll learn how to work with both continuous and discrete datasets and be able to transform features from unstructured datasets. You will develop the skills necessary to select the best features as well as the most suitable extraction techniques. This book will cover Python recipes that will help you automate feature engineering to simplify complex processes. You'll also get to grips with different feature engineering strategies, such as the box-cox transform, power transform, and log transform across machine learning, reinforcement learning, and natural language processing (NLP) domains.
By the end of this book, you'll have discovered tips and practical solutions to all of your feature engineering problems.
What you will learn

Simplify your feature engineering pipelines with powerful Python packages
Get to grips with imputing missing values
Encode categorical variables with a wide set of techniques
Extract insights from text quickly and effortlessly
Develop features from transactional data and time series data
Derive new features by combining existing variables
Understand how to transform, discretize, and scale your variables
Create informative variables from date and time

Who this book is for
This book is for machine learning professionals, AI engineers, data scientists, and NLP and reinforcement learning engineers who want to optimize and enrich their machine learning models with the best features. Knowledge of machine learning and Python coding will assist you with understanding the concepts covered in this book.


目錄大綱


Foreseeing Variable Problems When Building ML Models
Imputing Missing Data
Encoding Categorical Variables
Transforming Numerical Variables
Performing Variable Discretisation
Working with Outliers
Deriving Features from Dates and Time Variables
Performing Feature Scaling
Applying Mathematical Computations to Features
Creating Features with Transactional and Time Series Data
Extracting Features from Text Variables


作者介紹


Soledad Galli is a lead data scientist with more than 10 years of experience in world-class academic institutions and renowned businesses. She has researched, developed, and put into production machine learning models for insurance claims, credit risk assessment, and fraud prevention. Soledad received a Data Science Leaders' award in 2018 and was named one of LinkedIn's voices in data science and analytics in 2019. She is passionate about enabling people to step into and excel in data science, which is why she mentors data scientists and speaks at data science meetings regularly. She also teaches online courses on machine learning in a prestigious Massive Open Online Course platform, which have reached more than 10,000 students worldwide.




相關書籍

Learn Robotics Programming - Second Edition: Build and control AI-enabled autonomous robots using the Raspberry Pi and Python

作者 Staple Danny

2020-01-22

基於Hadoop的大數據分析和處理

作者 魏祖寬

2020-01-22

SAS 統計軟體與資料分析

作者 沈葆聖

2020-01-22