深度學習之圖像識別:核心技術與案例實戰

深度學習之圖像識別:核心技術與案例實戰

作者: 言有三
出版社: 機械工業
出版在: 2019-04-01
ISBN-13: 9787111624721
ISBN-10: 7111624726





內容描述


本書全面介紹了深度學習在圖像處理領域中的核心技術與應用。書中不但重視基礎理論的講解,而且從第4章開始的每章都提供了一到兩個不同難度的案例供讀者實踐,讀者可以在已有代碼的基礎上進行修改和改進,從而加深對所學知識的理解。
  本書共10章,首先從深度學習的基礎概念開始,介紹了神經網絡的基礎知識和深度學習中的優化技術;然後系統地介紹了深度學習中與數據相關的知識,包括經典數據集的設計、數據集的增強以及數據的獲取與整理;接著重點針對圖像開發領域,用3章內容系統地介紹了深度學習在圖像分類、圖像分割和目標檢測3個領域的核心技術與應用,這些內容的講解均結合實戰案例展開;另外,還對深度學習中損失函數的發展、數據和模型的可視化以及模型的壓縮和優化進行了詳細介紹,為讀者設計和訓練更加實用的模型提供了指導;最後以微信小程序平臺為依托,介紹了微信小程序前後端開發技術,完成了深度學習的模型部署,讓本書的內容形成了一個完整的閉環。
  本書理論與實踐結合,深度與廣度兼具,特別適合深度學習領域的相關技術人員與愛好者閱讀,尤其適合基於深度學習的圖像從業人員閱讀,以全方位瞭解深度學習在圖像領域中的技術全貌。另外,本書還適合作為相關培訓機構的深度學習教材使用。
如何使用好數據?
深度學習的核心優化技術有哪些?
如何做好圖像分類任務?
如何做好圖像分割任務?
如何做好目標檢測任務?
如何對數據和模型進行可視化分析?
如何壓縮和優化一個工業級深度學習模型?
如何理解分類和回歸等任務的損失函數?
如何在微信小程序上部署模型?
……
通過閱讀本書,你將瞭解這些復雜問題背後的原理,甚至你都可以自己解決這些問題。

本書核心知識
理論基礎
神經網絡與捲積神經網絡基礎
捲積神經網絡核心理論技術
開源框架簡介
圖像識別核心知識
數據集的發展與使用
數據和模型可視化
模型壓縮與優化
損失函數
圖像分類
圖像分割
目標檢測
八大經典案例
人臉表情分類
鳥類細粒度分類
人臉屬性分割
人像分割
貓臉檢測
TensorFlow可視化應用
MobileNet語義分割模型壓縮
微信小程序部署




相關書籍

Data Science (The MIT Press Essential Knowledge series)

作者 John D. Kelleher Brendan Tierney

2019-04-01

實用統計學-使用 Excel、SAS、R語言分析

作者 洪來發

2019-04-01

Data Mining for Business Analytics: Concepts, Techniques, and Applications with JMP Pro (Hardcover)

作者 Galit Shmueli Peter C. Bruce Mia L. Stephens Nitin R. Patel

2019-04-01







2
2
2