TensorFlow深度學習(原書第2版)
內容描述
《TensorFlow深度學習(原書第2版)》深入介紹瞭如何使用TensorFlow
構建深度學習應用,從實踐的角度講解深度學習知識。
本書主要內容包括深度學習入門,介紹了機器學習和深度學習的基礎知識;
TensorFlow的主要特性,以及TensorFlow的安裝與配置,
通過示例進行TensorFlow計算、數據和編程模型的學習;
基於TensorFlow的前饋神經網絡、卷積神經網絡、
優化TensorFlow自編碼器以及循環神經網絡。
此外,《TensorFlow深度學習(原書第2版)》
還介紹了關於異構和分佈式計算的內容,學習如何在GPU闆卡和分佈式系統上執行TensorFlow模型。
在TensorFlow高級編程部分對TensorFlow基本庫進行了概述。
末尾,本書介紹了基於因子分解機的推薦系統以及強化學習。
目錄大綱
譯者序
原書前言
作者簡介
評閱人簡介
第1章深度學習入門// 1
1.1 機器學習簡介// 1
1.1.1 監督學習// 3
1.1.2 不平衡數據// 4
1.1.3 無監督學習// 4
1.1.4 強化學習// 5
1.1.5 什麼是深度學習// 6
1.2 人工神經網絡// 7
1.2.1 生物神經元// 8
1.2.2 人工神經元// 9
1.3 人工神經網絡是如何學習的// 10
1.3.1 人工神經網絡與反向傳播算法// 10
1.3.2 權重優化// 11
1.3.3 隨機梯度下降// 11
1.4 人工神經網絡架構// 12
1.4.1 深度神經網絡// 12
1.4.2 卷積神經網絡// 15
1.4.3 自編碼器// 17
1.4.4 循環神經網絡// 18
1.4.5 新興架構// 18
1.5 深度學習框架// 18
1.6 小結// 21
第2章TensorFlow初探// 22
2.1 TensorFlow概述// 22
2.2 TensorFlow v1.6的新特性// 23
2.2.1 支持優化的NVIDIA GPU // 24
2.2.2 TensorFlow Lite簡介// 24
2.2.3 動態圖機制// 25
2.2.4 優化加速線性代數// 25
2.3 TensorFlow安裝與配置// 25
2.4 TensorFlow計算圖// 26
2.5 TensorFlow代碼結構// 29
2.5.1 TensorFlow下的動態圖機制// 31
2.6 TensorFlow數據模型// 32
2.6.1 張量// 32
2.6.2 秩與維度// 34
2.6.3 數據類型// 35
2.6.4 變量// 38
2.6.5 Fetches // 39
2.6.6 Feeds和占位符// 39
2.7 基於TensorBoard的可視化計算// 41
作者介紹
Giancarlo Zaccone
在管理科学和工业领域已有十多年的研究经验。
Giancarlo曾在意大利国家研究委员会的CNR担任研究员。
作为数据科学和软件工程项目的一部分,他在数值计算、
并行计算和科学可视化方面积累了丰富经验。
目前,Giancarlo是一家总部位于荷兰的公司的一名软件和系统不错工程师,
主要负责测试和开发太空和国防应用软件系统。
Giancarlo拥有那不勒斯Federico II大学的物理学硕士学位和罗马La Sapienza大学的科学计算二级研究生硕士学位。
Md. Rezaul Karim是德国Fraunhofer FIT的一名研究科学家。
目前在德国亚琛工业大学攻读博士学位