Interactive Data Visualization with Python : Present your data as an effective and compelling story, 2/e (Paperback)

Interactive Data Visualization with Python : Present your data as an effective and compelling story, 2/e (Paperback)

作者: Belorkar Abha Guntuku Sharath Chandra Hora Shubhangi
出版社: Packt Publishing
出版在: 2020-04-13
ISBN-13: 9781800200944
ISBN-10: 1800200943
裝訂格式: Quality Paper - also called trade paper
總頁數: 362 頁





內容描述


Create your own clear and impactful interactive data visualizations with the powerful data visualization libraries of Python
Key Features

Study and use Python interactive libraries, such as Bokeh and Plotly
Explore different visualization principles and understand when to use which one
Create interactive data visualizations with real-world data

Book Description
With so much data being continuously generated, developers, who can present data as impactful and interesting visualizations, are always in demand. Interactive Data Visualization with Python sharpens your data exploration skills, tells you everything there is to know about interactive data visualization in Python.
You'll begin by learning how to draw various plots with Matplotlib and Seaborn, the non-interactive data visualization libraries. You'll study different types of visualizations, compare them, and find out how to select a particular type of visualization to suit your requirements. After you get a hang of the various non-interactive visualization libraries, you'll learn the principles of intuitive and persuasive data visualization, and use Bokeh and Plotly to transform your visuals into strong stories. You'll also gain insight into how interactive data and model visualization can optimize the performance of a regression model.
By the end of the course, you'll have a new skill set that'll make you the go-to person for transforming data visualizations into engaging and interesting stories.
What you will learn

Explore and apply different interactive data visualization techniques
Manipulate plotting parameters and styles to create appealing plots
Customize data visualization for different audiences
Design data visualizations using interactive libraries
Use Matplotlib, Seaborn, Altair and Bokeh for drawing appealing plots
Customize data visualization for different scenarios

Who this book is for
This book intends to provide a solid training ground for Python developers, data analysts and data scientists to enable them to present critical data insights in a way that best captures the user's attention and imagination. It serves as a simple step-by-step guide that demonstrates the different types and components of visualization, the principles, and techniques of effective interactivity, as well as common pitfalls to avoid when creating interactive data visualizations. Students should have an intermediate level of competency in writing Python code, as well as some familiarity with using libraries such as pandas.


目錄大綱


Introduction to Visualization with Python-Basic and Customized Plotting
Static Visualization - Global Patterns and Summary Statistics
From Static to Dynamic Visualization
Interactive Visualization of Data across Strata
Interactive Visualization of Data across Time
Interactive Visualization of Data across Geographical Regions
Avoiding Common Pitfalls to Create Interactive Visualization


作者介紹


Abha Belorkar is an educator and researcher in computer science. She received her bachelor's degree in computer science from Birla Institute of Technology and Science Pilani, India and her Ph.D. from the National University of Singapore. Her current research work involves the development of methods powered by statistics, machine learning, and data visualization techniques to derive insights from heterogeneous genomics data on neurodegenerative diseases.
Sharath Chandra Guntuku is a researcher in natural language processing and multimedia computing. He received his bachelor's degree in computer science from Birla Institute of Technology and Science, Pilani, India and his Ph.D. from Nanyang Technological University, Singapore. His research aims to leverage large-scale social media image and text data to model social health outcomes and psychological traits. He uses machine learning, statistical analysis, natural language processing, and computer vision to answer questions pertaining to health and psychology in individuals and communities.
Shubhangi Hora is a Python developer, artificial intelligence enthusiast, data scientist, and writer. With a background in computer science and psychology, she is particularly passionate about mental health-related AI. Apart from this, she is interested in the performing arts and is a trained musician.
Anshu Kumar is a data scientist with over 5 years of experience in solving complex problems in natural language processing and recommendation systems. He has an M.Tech. from IIT Madras in computer science. He is also a mentor at SpringBoard. His current interests are building semantic search, text summarization, and content recommendations for large-scale multilingual datasets.




相關書籍

商務數據分析基礎

作者 焦世奇 袁亮

2020-04-13

簡明的 TensorFlow 2 (全彩印刷)

作者 李錫涵 李卓桓 朱金鵬

2020-04-13

Kernel Methods and Machine Learning

作者 S. Y. Kung

2020-04-13