Mastering Machine Learning with Python in Six Steps, Second Edition: A Practical Implementation Guide to Predictive Data Analytics Using Python

Mastering Machine Learning with Python in Six Steps, Second Edition: A Practical Implementation Guide to Predictive Data Analytics Using Python

作者: Swamynathan Manohar
出版社: Apress
出版在: 2019-10-02
ISBN-13: 9781484249468
ISBN-10: 1484249461
裝訂格式: Quality Paper - also called trade paper
總頁數: 370 頁




內容描述


Explore fundamental to advanced Python 3 topics in six steps, all designed to make you a worthy practitioner. This updated version's approach is based on the "six degrees of separation" theory, which states that everyone and everything is a maximum of six steps away and presents each topic in two parts: theoretical concepts and practical implementation using suitable Python 3 packages.You'll start with the fundamentals of Python 3 programming language, machine learning history, evolution, and the system development frameworks. Key data mining/analysis concepts, such as exploratory analysis, feature dimension reduction, regressions, time series forecasting and their efficient implementation in Scikit-learn are covered as well. You'll also learn commonly used model diagnostic and tuning techniques. These include optimal probability cutoff point for class creation, variance, bias, bagging, boosting, ensemble voting, grid search, random search, Bayesian optimization, and the noise reduction technique for IoT data. Finally, you'll review advanced text mining techniques, recommender systems, neural networks, deep learning, reinforcement learning techniques and their implementation. All the code presented in the book will be available in the form of iPython notebooks to enable you to try out these examples and extend them to your advantage.What You'll LearnUnderstand machine learning development and frameworksAssess model diagnosis and tuning in machine learningExamine text mining, natuarl language processing (NLP), and recommender systemsReview reinforcement learning and CNNWho This Book Is ForPython developers, data engineers, and machine learning engineers looking to expand their knowledge or career into machine learning area.


作者介紹


Manohar Swamynathan is a data science practitioner and an avid programmer, with over 14+ years of experience in various data science related areas that include data warehousing, Business Intelligence (BI), analytical tool development, ad-hoc analysis, predictive modeling, data science product development, consulting, formulating strategy and executing analytics program. He's had a career covering life cycle of data across different domains such as US mortgage banking, retail/e-commerce, insurance, and industrial IoT. He has a bachelor's degree with a specialization in physics, mathematics, computers, and a master's degree in project management. He's currently living in Bengaluru, the silicon valley of India.




相關書籍

Python和Dask數據科學

作者 [美] 傑西·丹尼爾(Jesse C. Daniel) 王穎 周致成 王龍江 譯 田禮悅 審校

2019-10-02

Virtual Humans: Today and Tomorrow (Chapman & Hall/CRC Artificial Intelligence and Robotics Series)

作者 David Burden Maggi Savin-Baden

2019-10-02

SQL Server Big Data Clusters: Data Virtualization, Data Lake, and AI Platform

作者 Weissman Benjamin Van De Laar Enrico

2019-10-02