機器學習與R語言 (原書第2版) (Machine Learning with R, Second Edition)
內容描述
本書共12章:第1章介紹機器學習的基本概念和理論,並介紹用於機器學習的R軟件環境的準備;第2章介紹如何應用R來管理數據,進行數據的探索分析和數據可視化;第3~9章介紹典型的機器學習算法,包括k近鄰分類算法、樸素貝葉斯算法、決策樹和規則樹、回歸預測、黑盒算法——神經網絡和支持向量機、關聯分析、k均值聚類,並給出大量的實際案例和詳細的分析步驟,例如乳腺癌的判斷、垃圾短信的過濾、貸款違約的預測、毒蘑菇的判別、醫療費用的預測、建築用混凝土強度的預測、光學字符的識別、超市購物籃關聯分析以及市場細分等;第10章介紹模型性能評價的原理和方法;第11章給出提高模型性能的幾種常用方法;第12章討論用R進行機器學習時可能遇到的一些高級專題,如特殊形式的數據、大數據集的處理、並行計算和GPU計算等技術。